Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution ShiftsWe consider a federated learning (FL) system consisting of multiple clients and a server, where the clients aim to collaboratively learn a common decision model from their distributed data. Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model. In this work, we leverage the idea of distribution shift mappings in performative prediction to formalize this model-dependent data distribution shift and propose a performative FL framework. We first introduce necessary and sufficient conditions for the existence of a unique performative stable solution and characterize its distance to the performative optimal solution. Then we propose the performative FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T) under both full and partial participation schemes.In particular, we use novel proof techniques and show how the clients' heterogeneity influences the convergence. Numerical results validate our analysis and provide valuable insights into real-world applications.more » « less
- 
            Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution ShiftsWe consider a federated learning (FL) system consisting of multiple clients and a server, where the clients aim to collaboratively learn a common decision model from their distributed data. Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model. In this work, we leverage the idea of distribution shift mappings in performative prediction to formalize this model-dependent data distribution shift and propose a performative FL framework. We first introduce necessary and sufficient conditions for the existence of a unique performative stable solution and characterize its distance to the performative optimal solution. Then we propose the performative FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T) under both full and partial participation schemes. In particular, we use novel proof techniques and show how the clients' heterogeneity influences the convergence. Numerical results validate our analysis and provide valuable insights into real-world applications.more » « less
- 
            Abstract A unified approach to mono- and disubstituted N–H indoles is described by means of oxidative cyclization of 2-alkenyl anilines, which are prepared by cross-coupling of the corresponding o-bromoanilines. This procedure is operationally expedient and tolerant of common functional groups to allow regiospecific installation of the alkyl and aryl substituents.more » « less
- 
            We study the design of a class of incentive mechanisms that can effectively prevent cheating in a strategic classification and regression problem. A conventional strategic classification or regression problem is modeled as a Stackelberg game, or a principal-agent problem between the designer of a classifier (the principal) and individuals subject to the classifier's decisions (the agents), potentially from different demographic groups. The former benefits from the accuracy of its decisions, whereas the latter may have an incentive to game the algorithm into making favorable but erroneous decisions. While prior works tend to focus on how to design an algorithm to be more robust to such strategic maneuvering, this study focuses on an alternative, which is to design incentive mechanisms to shape the utilities of the agents and induce effort that genuinely improves their skills, which in turn benefits both parties in the Stackelberg game. Specifically, the principal and the mechanism provider (which could also be the principal itself) move together in the first stage, publishing and committing to a classifier and an incentive mechanism. The agents are (simultaneous) second movers and best respond to the published classifier and incentive mechanism. When an agent's strategic action merely changes its observable features, it hurts the performance of the algorithm. However, if the action leads to improvement in the agent's true label, it not only helps the agent achieve better decision outcomes, but also preserves the performance of the algorithm. We study how a subsidy mechanism can induce improvement actions, positively impact a number of social well-being metrics, such as the overall skill levels of the agents (efficiency) and positive or true positive rate differences between different demographic groups (fairness).more » « less
- 
            null (Ed.)Network games provide a natural machinery to compactly represent strategic interactions among agents whose payoffs exhibit sparsity in their dependence on the actions of others. Besides encoding interaction sparsity, however, real networks often exhibit a multi-scale structure, in which agents can be grouped into communities, those communities further grouped, and so on, and where interactions among such groups may also exhibit sparsity. We present a general model of multi-scale network games that encodes such multi-level structure. We then develop several algorithmic approaches that leverage this multi-scale structure, and derive sufficient conditions for convergence of these to a Nash equilibrium. Our numerical experiments demonstrate that the proposed approaches enable orders of magnitude improvements in scalability when computing Nash equilibria in such games. For example, we can solve previously intractable instances involving up to 1 million agents in under 15 minutes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available